

REMEMBER

"NO ONE IS YOU AND THAT IS YOUR POWER"

Important Instructions:

- The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars carefully with blue/black ballpoint pen only. Each subject contains two sections Section A contains 35 question which are all mandatory and Section B contains 15 question in which only 10 questions are to be attempted.
- The test is of 3 hours and 20 minutes duration and Test Booklet contains 200 questions. Each question carries 4 marks.
 For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total score. The maximum marks are 720.
- 3. Use Blue/Black Ballpoint Pen Only for writing particulars on this page/marking responses.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator before leaving the Hall. The candidates are allowed to take away Test Booklet only with them.
- 6. The CODE for this Booklet is A for English Medium and B for Hindi Medium. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet & Answer Sheet.
- 7. The candidate should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll no. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
- 8. Use of white fluid for correction is not permissible on the Answer Sheet.
- 9. Each candidate must show on demand his/her Admit Card to the Invigilator.
- 10. No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
- 11. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty And sign the Attendance Sheet. Cases where a candidate has not signed the Attendance Sheet will be deemed not to have Handed over the Answer Sheet & dealt with as an unfair means case.
- 12. Use of Electronic/Manual Calculator is prohibited.
- The candidates are governed by Rules & Regulations of the Institute with regard to their conduct in the Examination Hall, All cases of unfair means will be dealt with as per Rules and Regulations of the Institute.
- 14. No part of the Test Booklet & Answer Sheet shall be detached under any circumstances.
- 15. The Candidates will write the correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance Sheet.

Name of the Candidate (in Capitals) :

Roll Number (in Figures) : _____

(in Words) :____

Centre of Examination (in Capitals) :_____

Candidate's Signature :____

_____Invigilator's Signature:_____

2nd Floor, 4A Victory Chamber, Ratlam Kothi, Geeta Bhawan Square , Indore 70248-60313

SUBJECT	ΤΟΡΙϹ
PHYSICS	NLM & 2D Motion
CHEMISTRY	Redox reaction, mole concept
BIOLOGY	Digestion and absorption Breathing and exchange of gases

PHYSICS

SECTION - A

- At the top of the trajectory of a projectile the direction of its velocity and acceleration are-
 - (1) Parallel to each other
 - (2) inclined at an angle of 45° to the horizontal
 - (3) Perpendicular to each other
 - (4) None of the above statement is correct
- 2. Three particles, A , B and C are projected from the same point with same initial speeds making angles 30° , 45° and 60° respectively with the horizontal. Which of the following statement is correct ?
 - (1) A, B and C have equal ranges
 - (2) ranges of A and C are equal and less than that of B
 - (3) ranges of A and C are equal and greater than that of B
 - (4) A, B and C have equal ranges
- The horizontal range covered by projectile is proportional to
 - (1) its velocity
 - (2) square of its velocity
 - (3) sine of the angle of projection
 - (4) square of the sine of the angle of projection
- 4. The horizontal range for projectile is given by

(1)
$$\frac{u^{2} \sin^{2} \theta}{g}$$
 (2)
$$\frac{u^{2} \sin 2\theta}{g}$$
 (3)
$$\frac{u^{2} \sin 2\theta}{2g}$$
 (4)
$$\frac{u^{2} \cos 2\theta}{g}$$

5. The maximum vertical height attained by a projectile is

(1)
$$\frac{U^2 \sin \theta}{g}$$
 (2)
$$\frac{U^2 \sin 2\theta}{g}$$
 (3)
$$\frac{U^2 \sin 2\theta}{2g}$$
 (4)
$$\frac{U^2 \sin^2 \theta}{2g}$$

6. Equation of motion of a projectile is

(1)
$$y = x \tan \theta - \frac{gx^2}{2u^2 \cos^2 \theta}$$

(2) $y = x \tan \theta + \frac{gx^2}{2u^2 \cos^2 \theta}$
(3) $y = x \sin \theta - \frac{gx^2}{2u \cos^2 \theta}$
(4) $y = x \sin \theta + \frac{gx^2}{2u^2 \cos^2 \theta}$

A cannon on a level plane is aimed at an angle α above the horizontal and a shell is fired with a muzzle velocity v towards a vertical cliff a distance R away. The height from the bottom at which the shell strikes the side walls of the cliff is-

(1) R tan
$$\alpha$$
 - $\frac{1}{2} \frac{gR^2}{v_0^2 \cos^2 \alpha}$

(2) R tan
$$\alpha - \frac{1}{2} \frac{gR^2}{v_0^2}$$

(3) R sin $\alpha - \frac{1}{2} \frac{gR^2}{v_0^2 \sin^2 \alpha}$

(4) R tan
$$\alpha$$
 + $\frac{1}{2} \frac{gR^2}{v_0^2}$

- 8. A player kicks up a ball at an angle θ to the horizontal. The horizontal range is maximum when θ equals-
 - (1) 30° (2) 45° (3) 60° (4) 90°
- 9. The angle of projection of a body is 15°. The other angle for which the range is the same as the first one is equal to-
 - (1) 30° (2) 45°
 - (3) 60° (4) 75°

				NUCLEUN	M NEET TEST_11_ENG-07
10.	A particle is projected s	uch that the horizontal	16.	The maximum range of	a gun on a horizontal
	range and vertical height	t are the same. Then the		terrain is 16 km. If g =	10 m/sec^2 , the muzzle
	angle of projection is-			velocity of the shell mus	st be-
	(1) π/4			(1) 400 m/sec	(2) 160 $\sqrt{10}$ m/sec
	(2) \tan^{-1} (4)			(3) 1600 m/sec	(4) 200 $\sqrt{2}$ m/sec
	(3) $\tan^{-1}(1)$		17.	The range of the particle	which is projected at an
	(4) π/3			angle of 15° is 1.5 km. W	That will be the range for
11.	A ball is thrown at an a	ngle of 45° with the		an angle of projection 4	15°
	horizontal with kinetic ene	ergy E. The kinetic energy		(1) 0.5 km	(2) 1.5 km
	at the highest point durin	ng the flight is-		(3) 2.5 km	(4) 3 km
	(1) Zero	(2) E/2	18.	The kinetic energy of a	projectile at the highest
	(3) E	(4) (2) ^{1/2} E		point is-	
12.	A ball is thrown with in	itial energy 100J at an		(1) Zero	
	angle θ to the horizontal	. If its energy at the top	\bigcirc	(2) Maximum	
	becomes 30 J then angle	e of projection-	RV	(3) Minimum	
	(1) $\theta = 45^{\circ}$	(2) $\theta = 30^{\circ}$		(4) Equal to total energy	/
	(3) $\theta = \cos^{-1}(3/10).$	(4) $\theta = \cos^{-1}(3/10)^{1/2}$	19.	The equation of a project	ctile is
13.	The horizontal and vertic	cal distances travelled by	r St	$y = \sqrt{2} x \frac{gx^2}{2}$ The s	l, BMC)
	a particle in time t are g	given by $x = 6t$ and		$y = \sqrt{3} x - \frac{1}{2}$. The z	ingle of projection is-
	$y = 8t - 5t^2$. If $g = 10$ m	m/sec^2 , then the initial		(1) 30°	(2) 60°
	velocity of the particle is	5-		(3) 45°	(4) None
	(1) 8 m/sec	(2) 10 m/sec	20.	The equation of projectil	e is y = $16x - \frac{5x^2}{4}$. The
	(3) 5 m/sec	(4) zero	K	horizontal range is-	7
14.	A body is thrown with a v	elocity of 9.8 m/s making		(1) 16 m	(2) 8 m
	an angle of 30° with the	horizontal. It will hit the	\mathbf{k}	(3) 3.2 m	(4) 12.8 m
	ground after a time-		21.	For angles of projection	of a projectile at angles
	(1) 3 s	(2) 2 s		$(45 + \theta)$ and $(45 - \theta)$, t	he horizontal ranges
	(3) 1.5 s	(4) 1 s		describe by the projectil	e are in the ratio of
15.	The maximum range of a	projectile is 22 m. When		(if $\theta \leq 45^{\circ}$)-	
	it is thrown at an angle of	f 15° with the horizontal,		(1) 2 : 1	
	its range will be-			(2) 1: 2	
	(1) 22 m	(2) 6 m		(3) 1: 1	
	(3) 15 m	(4) 11 m		(4) 2 : 3	
			1		

			NUCLEUM NEET TEST 11 ENG-07
22.	A projectile thrown with a speed v at an angle θ has a range R on the surface of the earth. For	27.	The time of flight of projectile is 10 second and its range is 500 m. The maximum height
	same v and θ , its range on the surface of moon will be-		reached by it will be $(g = 10 \text{ m/s}^2)$ - (1) 25 m (2) 50 m (2) 82 m (4) 125 m
	(1) R/8 (2) 6R (3) R/36 (4) 36 R	28.	(5) 82 m (4) 125 m If four balls A, B, C, D are projected with
23.	 In a projectile motion the velocity - (1) is always perpendicular to the acceleration (2) is never perpendicular to the acceleration (3) is perpendicular to the acceleration for one 		same speed at angles of 15° , 30° , 45° and 60° with the horizontal respectively, the two balls which will fall at the same place will be-
24.	instant only(4) is perpendicular to the acceleration for two instantTwo projectile A and B are projected with angle	29.	 (1) A and B (2) A and D (3) B and D (4) A and C A ball is thrown at an angle θ with the horizontal.
	of projection 15° for the projectile A and 45° for the projectile B. If R_A and R_B be the horizontal range for the two projectiles, then - (1) $R_A < R_B$ (2) $R_A = R_B$ (3) $R_A > R_B$		Its kinetic energy is 100 J and it becomes 30 J at the highest point. The angle of projection is- (1) 45° (2) 30° (3) $\cos^{-1}\left(\frac{3}{10}\right)$ (4) $\cos^{-1}\left(\sqrt{\frac{3}{10}}\right)$
25.	 (4) The information is insufficient to decide the relation of R_A with R_B A body is projected with a speed 'u' at an angle to the horizontal to have maximum range at the highest point the velocity is- 	30.	The height y and the distance x along the horizontal plane of projection on a certain planet (with no surrounding atmosphere) are given by $y = (8t - 5t^2)$ metre and $x = 6t$ metre where t is in seconds. The velocity with which
26.	(1) Zero (2) u (3) $\frac{u}{\sqrt{2}}$ (4) $u\sqrt{2}$ If two stones projected from the same point with same initial speed but an angle $\pi/3$ and		 the projectile is projected is- (1) 8 m/sec (2) 6 m/sec (3) 10 m/sec (4) not obtainable from the data
	$\pi/6$ respectively have their ranges R_1 and R_2 , then- (1) $R_1 = 2R_2$ (2) $R_1 = R_2$ (3) $R_1 = 5R_2$ (4) $R_1 = 25R_2$	31.	A body is projected at an angle of 30° to the horizontal with a speed of 40 m/s. The angle with the horizontal after 2 seconds will be- (1) 10° (2) 30° (3) 45° (4) 0°

2nd Floor, Victory Chamber, Ratlam Kothi, Geeta bhawan Square, Indore - 7024860313

(3)

32. A marble A is dropped vertically, another identical marble B is projected horizontally from the same

point at the same instant

- (1) A will reach the ground earlier than B
- (2) B will reach the ground earlier than A
- (3) both A and B will reach the ground at the same instant
- (4) none of the above
- 33. A stone is just released from the window of a train moving along a horizontal straight track. The stone will hit the ground following a
 - (1) straight line path
 - (2) circular path
 - (3) parabolic path
 - (4) hyperbolic path
- **34.** The trajectory of a projectile fired horizontally with velocity u is parabola given by-

(1)
$$y = \frac{g}{2u^2} x^2$$
 ech, C

(2) $y = -\frac{g}{2u^2} x^2$

(3)
$$y = \frac{g}{2u^2}y^2$$

(4) $y = \frac{g}{2u^2}y^2$

- **35.** A body projected from the top of a tower horizontally with an initial velocity 20 m/s hits the ground at an angle of 45°. The vertical component of velocity at the times of hitting is-
 - (1) 20 m/s
 - (2) 20 $\sqrt{2}$ m/s
 - (3) 20 / $\sqrt{2}$ m/s
 - (4) $10\sqrt{3}$ m/s

NUCLEUM NEET TEST_11_ENG-07

SECTION - B

36. A metal sphere is hung by a string fixed to a wall. The forces acting on the sphere are shown in fig. Which of the following statements is/are correct?

37. A body of mass 5 kg is suspended by the strings making angles 60° and 30° with the horizontal -

38. A block D weighing 300 kg is suspended by means of two cords A and B as shown in the figure. W is a vertical wall and R a horizontal rigid beam. The tension in the string A in kg is-

- (3) 300 (4) 400
- **39.** The ratio of angular speed of hours hand and seconds hand of a clock is-

(1) 1 : 1	(2) 1 : 60
(3) 1 : 720	(4) 3600 : 1

NUCLEUM NEET TEST_11_ENG-07

40. The ratio of angular speeds of minutes hand and hour hand of a watch is -

$(1) 1 \cdot 12$	$(2) 6 \cdot 1$
(1) 1:12	(2)0:1

(3)	12:1	(4) 1:6	

- **41.** The angular velocity of earth about its axis of rotation is-
 - (1) 2π / ($60 \times 60 \times 24$) rad / sec
 - (2) $2\pi\,/\,($ 60 \times 60) rad $\,/$ sec
 - (3) 2π / 60 rad / sec
 - (4) $2\pi\,/\,($ 365 $\times\,24\,\times\,60\,\times\,60\,$) rad $\,/\,sec$
- **42.** The ratio of angular speeds of minutes hand and hour hand of a watch is -
 - (1) 1 : 12 (2) 6 : 1
 - (3) 12:1 (4) 1:6
- 43. A particle moves in circular path with uniform speed
 v. The change in its velocity on rotating through 60°
 is -

(1)
$$v\sqrt{2}$$
 (2) $\frac{v}{\sqrt{2}}$
(3) v (4) Zero

- 44. Two bodies of masses 10 kg and 5 kg moving on concentric orbits of radii R and r such that their pe riod of revolution are same. The ratio of their cen tripetal acceleration is -
 - (1) $\frac{R}{r}$ (2) $\frac{r}{R}$ (3) $\frac{R^2}{r^2}$ (4) $\frac{r^2}{R^2}$
- **45.** If a particle moves in a circle describing equal angles in equal interval of times, its velocity vector
 - (1) remains constant
 - (2) changes in magnitude
 - (3) changes in direction
 - (4) changes both in magnitude and direction
- **46.** The breaking tension of a string is 10 N. A particle of mass 0.1 kg tied to it is rotated along a horizontal circle of radius 0.5 metre. The maximum speed with which the particle can be rotated without breaking the string is-
 - (1) $\sqrt{5}$ m/sec (2) $\sqrt{(50)}$ m/sec
 - (3) $\sqrt{(500)}$ m/sec (4) $\sqrt{(1000)}$ m/sec

47. A particle completes 3 revolutions per second on a circular path of radius 8 cm. Find the values of angular velocity and centripetal acceleration of the particle -

(1)
$$6\pi \frac{\text{rad}}{\text{s}}$$
; $288\pi^2 \frac{\text{cm}}{\text{s}^2}$ (2) $\pi \frac{\text{rad}}{\text{s}}$; $275\pi^2 \frac{\text{cm}}{\text{s}^2}$
(3) $6\pi \frac{\text{rad}}{\text{c}}$; $288 \frac{\text{cm}}{\text{s}^2}$ (4) None

48. A car of mass 1000 kg moves on a circular track of radius 20 m. if the coefficient of friction is 0.64, what is the maximum velocity with which the car can be moved?

(1) 1.12 m/s
(2) 11.2 m/s
(3)
$$\frac{0.64 \times 20}{1000}$$
 m/s
(4) $\frac{1000}{0.64 \times 20}$ m/s

49. The earth, radius 6400 km, makes one revolution about its own axis in 24 hours. The centripetal acceleration of a point on its equator is nearly -

(1) 340
$$\frac{\text{cm}}{\text{sec}^2}$$
 (2) 3.4 $\frac{\text{cm}}{\text{sec}^2}$

(3)
$$34 \frac{\text{cm}}{\text{sec}^2}$$
 (4) 0.34 $\frac{\text{cm}}{\text{sec}^2}$

50. A car is travelling with linear velocity v on a circular road of radius r. If it is increasing it speed at the rate of 'a' metre/sec², then the resultant acceleration will be-

(1)
$$\sqrt{\left(\frac{v^2}{r^2} - a^2\right)}$$

(2) $\sqrt{\left(\frac{v^4}{r^2} + a^2\right)}$
(3) $\sqrt{\left(\frac{v^4}{r^2} - a^2\right)}$
(4) $\sqrt{\left(\frac{v^2}{r^2} + a^2\right)}$

		CITIZN	191	N I	
	SECT	ION - A	59.	12 litre of H_2 and	11.2 litre of Cl_2 are mixed and
51.	The total number of	protons, electrons and		is -	mposition by volume of mixture
	neutrons in 12gm of	₆ C ¹² is -		(1) 24 litre of HC	1
	(1) 1.084×10^{25}	(2) 6.022×10^{23}		(2) 0.8 litre Cl ₂ a	nd 20.8 lit HCl.
	(3) 6.022×10^{22}	(4) 18		(3) 0 8 litre H ₂ &	22.4 litre HCl
52.	Number of Ca ⁺² and	Cl ⁻ ion in 111 g of anhydrous		(4) 22 4 litre HCl	22.1 1100 1101
	CaCl ₂ are -		60	For the reaction :	$\Lambda + 2\mathbf{R} \rightarrow C$
	(1) N_A , $2N_A$	(2) $2N_A$, N_A	00.	5 male of A and	$A + 2D \rightarrow C$
	$(3) N_A, N_A$	(4) None		5 mole of A and	8 mole of B will produce -
53.	The weight of a subst	cance that displaces 22.4 litre		(1) 5 mole of C	
	air at NTP is -			(2) 4 mole of C	
	(1) Mol. wt.	(2) At. wt.		(3) 8 mole of C	
	(3) E wt.	(4) all	T	(4) 13 mole of C	HOTOV
54.	Mol. wt. = vapour d	ensity \times 2, is valid for -	61.	An element A is t	etravalent and another element
	(1) metals	(2) non metals	By	B is divalent. T	The formula of the compound
	(3) solids	(4) gases			(2) AD
55.	Equal masses of O ₂	, H_2 and CH_4 are taken in a		(I) A_2B	(2) AB
	container. The respec	tive mole ratio of these gases	MG	(3) AB_{2C} , INI	$(4) A_2 B_3$
	in container is -		62.	The moles of O_2	required for reacting with 6.8
	(1) 1 : 16 : 2	(2) 16 : 1 : 2		gm of ammonia.	
	(3) 1 : 2 : 16	(4) 16 : 2 : 1		(NH ₃ + O	$_2 \rightarrow \dots NO + \dots H_2O$) is
56.	The percent of N in 6	56% pure $(NH_4)_2$ SO ₄ sample		(1) 5	(2) 2.5
	is -			(3) 1	(4) 0.5
	(1) 32	(2) 28	63.	Total no. of atom	ns in 44 gm of CO_2 is -
	(3) 14	(4) None of these		(1) 6.02×10^{23}	(2) 6.02×10^{24}
57.	The empirical formu	la of a compound is CH. Its		(3) 1.806×10^{24}	(4) 18.06×10^{22}
	molecular weight is 7	8. The molecular formula of	64.	The % loss in wei	ght after heating a pure sample
	the compound will b	e -		of potassium chl	orate (M. wt. 122.5) will be -
	(1) C_2H_2	(2) C_3H_3		(1) 12.25	(2) 24.50
	(3) C_4H_4	(4) $C_6 H_6$		(3) 39.17	(4) 49.00
58.	An oxide of a metal	(M) contains 40% by mass	65.	Find the volume	of CO ₂ obtained at S.T.P. on
	of oxygen. Metal (M) has atomic mass of 24. The		heating 200 gm	of 50% pure CaCO ₃ -
	empirical formula of	the oxide is-		(1) 11.2 litre	(2) 22.4 litre
	(1) M ₂ O	(2) MO		(3) 44.8 litre	(4) None of these
	(3) M ₂ O ₃	(4) M ₃ O ₄			

CHEMISTDV

	AREER INSTITUTE			NU	CLEUMN	NEET TEST_11 th _ENG-07
66.	A sample of AlF_3 cor number of formula	tains 3.0×10^{24} F ⁻ ions. The units in this sample are -	74.	Which one of reaction ?	the fol	lowing is a redox
	(1) 9.0×10^{24}			(1) $H_2 + Br_2 = 2$	HBr	
	(2) 3.0×10^{24}			(2) $2NaCl + H_2SC$	$D_4 = Na_2$	$_2$ SO ₄ + 2HCl
	(3) 0.75×10^{24}			(3) HCl + AgNO ₃	g = AgCl	I + HNO ₃
	(4) 1.0×10^{24}			(4) NaOH + HCl	= NaCl	+ H ₂ O
67.	The mass of 70% neutralisation of 1	pure H_2SO_4 required for mol of NaOH -	75.	The oxidation nun (1) 0	nber of c	arbon in $C_{12}H_{22}O_{11}$ is (2) - 6
	(1) 49 gm	(2) 98 gm		(3) + 6		(2) (4) (4) (4) (4)
	(3) 70 gm	(4) 34.3 gm	76.	In the reaction		$(1) \cdot 2$
68.	1.5 gm of divalent me (at. wt. = 64) from a	etal displaced 4 gm of copper a solution of copper sulphate.		$2Na_2S_2O_3 + I_2$ the oxidation state	$\rightarrow \text{Na}_2$	$S_4O_6 + 2NaI,$
	The atomic weight	of the metal is-		(1) Increased		(2) Decreased
	(1) 12 (2) 48	(2) 24		(1) mercused(3) Remains same		(4) None
69.	(3) 48 Avogadro's number	(4) 6 of Rupees can be spent in	77.	The oxidation stat	e of iodi	ne in $H_4IO_6^-$ is:
	$(1) 1.01 \times 10^{10} \text{ wear}$	rupees per second are spent - $(2) 2 - 01 - (10)^{10} \text{ wave } = (2)^{10} \text{ spent} = (2)^{10} \text{ spen} = (2$	By	(1) +7		(2) -1
	(1) 1.91×10^{10} year (3) 3.91×10^{10} year	(4) 4.91×10^{10} year	lis	(3) +5 2 Si i	•	(4) +1
70.	The amount of sulphus of H_2SO_4 is -	required to produce 100 moles	78.	In the reaction M $SO_4^{2-} + Mn^{2+} +$	MnO ₄ R + · H ₂ O	$SO_3^{2-} + H^+ \longrightarrow$
	(1) 3.2×10^3 gm	(2) 32.65 gm		(1) MnO_4^- and H	⁺ both a	re reduced
	(3) 32 gm	(4) 3.2 gm		(2) MnO_4^{-} is redu	iced and	H ⁺ is oxidised
71.	In the reaction,			(3) MnO_4^- is redu	iced and	SO_3^{2-} is oxidised
	$3Br_2 + 6CO_3^{2-} + 3H_3$	$H_2O \rightarrow$		(4) MnO_4^- is oxid	lised and	1 SO_3^{2-} is reduced
		$5Br^{-} + BrO_{3}^{-+} 6HCO_{3}^{}$	79.	Which of the follo	owing ha	logens always shows
	(1) Bromine is oxidis	sed and carbonate is reduced	\mathbb{V}	only one oxidation	n state-	
	(2) Bromine is oxidi	sed as well as reduced	N	(1) Cl		(2) F
	(3) Bromine is reduc	ced and water is oxidised		(3) Br		(4) I
	(4) Br_2 is neither ox	idised nor reduced	80.	In which of the foll	lowing re	eactions, the underlined
72.	Oxidation state of hy	ydrogen in CaH ₂ is -		element has decrea	sed its or	xidation number during
	(1) +1	(2) -1		the reaction ?	a	P . 60
	(3) + 2	(4) 0		(1) <u>Fe</u> + CuSO ₄ -	\rightarrow Cu +	FeSO ₄
73.	Oxidation number of	f C in CH_2Cl_2 is -		(2) $\underline{\mathrm{H}}_{\underline{2}} + \mathrm{Cl}_{\underline{2}} \rightarrow 2$		
	(1) +2	(2) + 4		$(3) \underline{C} + H_2 O \rightarrow O$	$CO + H_2$	
	(3) – 4	(4) 0		(4) $\underline{Mn}O_2$ + 4HCl	\rightarrow MnC	$CI_2 + CI_2 + 2H_2O$

(7)

81.	Oxidation number of	'Ni in Ni(C	O) ₄ is-	87.	For the r	edox reaction		
	(1) 0	(2) 4	Ť		MnO_4^{-}	$+ Fe^{++} + H^{+}$	\rightarrow	
	(3) 8	(4) 2			т	$Mn^{2+} + Fe^{3+}$	+ H ₂ O	
82.	The oxidation number	er of nitroge	en in NH ₂ OH is-		in the ba	lanced equation,	correct coeffic	ient are –
	(1) + 1	(2) – 1				MnO_4^-	Fe ^{2 +}	H^{+}
	(3) – 3	(4) – 2			(1)	1	5	8
83.	O.N. of hydrogen respectively would	in KH, N be-	IgH ₂ and NaH		(2) (3)	16 5	5 16	2 2
	(1) -1, -1 and -1				(4)	2	16	5
	(2) +1, +1, and +1			88.	In the ch	emical reaction		-
	(3) +2, +1 and -2				K ₂ Cr ₂ O ₇	+ XH ₂ SO ₄	+ $YSO_2 \rightarrow$	
	(4) -2 , -3 and -1				$K_2 SO_4$	+ $Cr_2(SO_4)_3$	+ ZH ₂ O	
84.	Which one can act as	oxidising &	& reducing agent		X, Y and	1 Z are –	L	
	both-				(1) 1, 3,	1		
	(1) HNO_2	(2) H_2O_2	HES I		(2) 4, 1,	45 1415	SIRY	
05	$(3) H_2 SO_3$	(4) all	1	By	(3) 3, 2,	3		
85.		m oxidation			(4) 2, 1,	² Cir		
	elements are given w	in ON	Max O N	89.	Cu + X	\rightarrow Cu (NO ₃) ₂	$+ 2H_2O + 2N$	O ₂ . Here
	(1) D		Ling,	NIC	X is-	, INDOR	E)	
	(1) $\mathbf{r} = \frac{1}{2}$	2 7	+ 5		(1) 4HN	0 ₃		
	(2) C1 + 1	2	+ 7		(2) 2HN	0 ₃		
	(4) e = -4	4	+ 4		(3) 4HN	0 ₂		
	SECTI				(4) 6HN	O ₃		
97	SEC II			90.	In the reaction:			
80.	For the redox reaction	m			$A^{-n}_{2} + xe \rightarrow A^{-n}_{1}$			
	$MnO_4^- + C_2O$	$4^{} + H^{+}$	\rightarrow		Here x will be –			
	Mn^{2+} + C	$CO_2 + H_2O_2$)		(1) $n_1 + n_2$			
	the correct coeffi	cients for	the balanced		(2) n ₂ -	n ₁		
	reaction are –				(3) n ₁ –	n ₂		
	MnO_4^-	$C_{2}O_{4}^{2-}$	H^{+}		(4) n ₁ .n ₂			
	(1) 2	5	16	91.	The equi in the re	valent weight of eaction,	[°] Na ₂ S ₂ O ₃ (Mol.	. wt = M)
	(2) 16	5	2		$2Na_2S_2O$	$I_3 + I_2 \rightarrow Na_2S_2$	$_4O_6 + 2NaI$ is	_
	(3) 5	16	2		(1) M/4		(2) M/3	
	(4) 2	16	5		(3) M/2		(4) M	

NUCLEUM NEET TEST_11th_ENG-07

92.	What is the reaction	ne equiv ?	alent we	eight of l	$\rm NH_3$ in the given	95.	Oxygen shows oxidation state of -1 in the
	3CuC) + 2NH	$H_2 = 3C$	$Cu + N_2$	+ 3H ₂ O		
	(1) 17		5	2	2		(1) No_2
	47						$(2) \operatorname{WhO}_2$ $(3) \operatorname{PhO}_2$
	(2) $\frac{17}{4}$						(3) 100_2
						06	(+) $\operatorname{Na}_2 O_2$
	(3) $\frac{17}{2}$					J0 .	(1) CH
							(1) CI_4 (2) CC_1
	(4) $\frac{17}{3}$						$ \begin{array}{c} (2) \\ (2) \\ (3) \\ (2) $
93	Consider	the follo	wing st	atement	in the reaction –		(3) $C\Gamma_4$
<i>))</i> .	$K_{10} \pm 5$	$KI \pm 6I$	JC1 - 2	$L \pm 6V$	$C1 \pm 3H O$	07	$(4) CO_2$
	(1) KL is	NI + 01	1CI = 3	1 ₂ + 0K	$CI + 3II_2O$	97.	either oxidation or reduction
	(1) KI IS $(2) KIO$	is ovidi	sed to I				$(1) VO^{2+} > VO$
	(2) KIO_3 (3) KIO	is redu	ced to I		IES II		(1) VO $V_2 V_3$ (2) N ₂ × N ₂ ⁺
	(3) KIO_3	tion nu	mber of	2 Lineras	uses from	By	(2) $7n^{+2}$ $7n^{-2}$
	(4) Oxida (-1) i	in KI to	zero in	I_2 of th	ese statements		$(3) \Sigma \Pi \longrightarrow \Sigma \Pi$ $(4) Cr \Omega^{-2} = Cr \Omega^{-2}$
	(1) a, c a	ind d ai	e corre	correct			(4) Clo4 (4) Cl2 Cl2 Cl2 Cl2 A cl2 Cl2 A cl2
	(2) a, b a	and d an	e corre	BBS .	Pursuing,	, 190.	nowder CaOCL is -
	(3) b and	d are	correct				(1) - 1 - 1
	(4) a alor	ne is co	rrect				(1) 1, 1 (2) +1 -1
94.	Match lis	t – I (co	ompound	ds) with	list – II		(2) + 1, -1 (3) + 1 + 1
	(Oxidation	n state o	of nitrog	en) and s	select the correct		(4) 0 -1
	answer u	using th	e codes	given b	elow the lists –	99	In Wustite $\text{Fe}_{\alpha \alpha} O$ the oxidation number of iron
	List –	Ι		List –	List – II		is
	(1)	NaN ₃		(1) +5			(1) 200/93
	(2)	N_2H_4		(2) +2			(2) 100/93
	(3)	NO			(3) -1/3		(3) 0.4
	(4)	N_2O_5		(4) -2			(4) 0.3
	Codes	:-				100	• Oxidation number of carbon in diamond is -
		А	В	С	D		(1) - 4
	(1)	c	d	b	a		(2) + 4
	(2)	d	c	b	a		(3) 0
	(3)	c	d	a	b		(4) + 2
	(4)	d	c	а	b		

NUCLEUM NEET TEST_11th_ENG-07

		DIUL	UG	<u> </u>		
	SECTIO	N - A	111.	Absorption of digested	food chiefly occurs in-	
101.	Bilirubin and bilivirdin and	re found in-		(1) Stomach	(2) Colon	
	(1) Blood	(2) Bile		(3) Small Intestine	(4) Large Intestine	
	(3) Saliva	(4) None of these.	112.	Pancreatic juice takes n	art in digestion of-	
102.	Casien present in milk,w	hich is -		(1) Proteins carbohydra	ate and fats	
	(1) bacterium	(2) sugar		(2) Proteins and fats		
	(3) protein	(4) fat		(3) Protein, carbohydra	te	
103.	Amylase enzyme acts or	n the -		(4) Proteins only		
	(1) Starch	(2) Protein	113.	The enzyme trypsinoge	n is secreted from-	
	(3) Fat	(4) Cane sugar		(1) Duodenum	(2) Pancreas	
104.	Liver cells secrete-			(3) Liver	(4) Stomach	
	(1) amylopsin	(2) trypsin	114.	Which one is differ from	the category of other three-	
	(3) lipase	(4) bile and no enzyme				
105.	Milk protein is curdled	into calcium paracacinate		(1) Gastrin	(2) Glucagon	
	by-		V	(3) Secretin	(4) Ptyalin	
	(1) Maltose	(2) Rennin	115.	A Carbohydrate splittin	g enzyme is secreted by -	
105	(3) Trypsin	(4) lactose		(1) Liver		
106.	Amino acids are absorbe	ed in-	t, M	(2) Zymogen cells of ga	stic glands	
	(1) Blood cappillaries of villi			(3) Spleen		
	(2) Wall of rectum			(4) Crypts of Lieberkuh	ın	
	(3) lacteals and blood cap	pillaries of villi	116.	Intake of food is called-		
	(4) lacteals of villi			(1) Ingestion	(2) Egestion	
107.	Proteins are broken dow	n into amino acids in-		(3) Digestion	(4) Nutrition	
	(1) Buccal cavity	(2) Stomach	117.	Enterokinase stimulates	which of the following-	
100	(3) Intestine	(4) Rectum		(1) Pepsinogen	(2) Trypsin	
108.	Ptyalin cannot work becomes-	in stomach, because it		(3) Pepsin	(4) Trypsinogen	
	(1) Inactive due to HCl		118. Absence of which		n of these in bile will make fa	
	(2) Inactive due to Reni	n		digestion difficult-	(2) C_{2} 14 π	
	(3) Inactive due to Pepsi	in		(1) Cholesterol	(2) Sans	
	(4) None of these		110	(3) Pigment	(4) Acids	
109.	Glycogen is stored in-		119.	(1) Disastian of mills		
	(1) Blood	(2) Liver		(1) Digestion of fink		
	(3) Lungs	(4) Kidney		(2) Absorption of lastic	aid	
110.	Digestion of carbohyd	lrates, proteins and fats		(J) Digestion of factic a		
	completes in-	· •	120	(4) None of the above	f Alimentery and are	
	(1) Stomach	(2) Liver	120.	(1) Circulation	(2) Deputition	
	(3) Small intestine	(4) Large intestine		(1) Chumina	(1) Degiunition	
				(3) Churning	(4) relistaisis	

					NUCLEUN	1NEETTEST_	_11 th _ENG-07
121.	Stool of a person contain	whitish grey colour due to	131.	Rickets is c	aused by the	deficiency o	f-
	malfunction of which ty	pe of organ:		(1) Vit A		(2) Vit C	
	(1) Pancreas (2) K^{1}	(2) Spleen		(3) Vit D		(4) Vit B	
100	(3) Kidney	(4) Liver	132.	Which vita	mins are wate	er soluble-	
122.	(1) A virus	sed by-		(1) Vit B &	c C	(2) Vit A &	С
	(1) A virus(2) Definitional of Vit E			(3) Vit C &	D	(4) Vit A &	В
	(2) Deficiency of Vit E(3) Deficiency of Vit C		133.	Pernicious	anaemia is	caused by d	eficiencv of
	(4) Deficiency of Vit. D			vitamin-		5	5
123	Vitamines are -			(1) C		(2) B_{1}	
120.	(1) Inorganic substances	s and can't be synthesized		(3) B ₁₂		(4) B ₆	
	by animals.	s and can't be synthesized	134.	Vit D is also	o called-		
	(2) Inorganic substance	s and can be synthesized		(1) Calcifer	ol	(2) Ascorbio	c acid
	(3) Organic substances	which cannot mostly be		(3) Retinol		(4) Folic Ac	id
	synthesized by anima	lls.	135.	The mineral element whose deficiency in human body may leads to goitre is-			
	(4) Organic substance synthesized by anima	ls.		(1) Iodine		(2) Fluorine	
124.	Which of the following	is the best source of Vit-A	У	(3) Calcium		(4) Sodium	
	(1) Carrot	(2) Apple			SECTIO	N - B	
	(3) Peanuts	(4) Honey	136.	Deficiency	of Vit E brin	gs about-	
125.	Vitamin necessary for bl	ood clotting -		(1) Scurvy)	
	(1) A	(2) E		(2) Beri- Be	eri		
	(3) C	(4) K		(3) Slow clo	otting of bloo	d	
126.	Beri-Beri is caused due	to-		(4) Impoter	nce		
	(1) Def. of Vit B_1	(2) Def. of Vit B ₂	137.	Bow - shape	ed legs in chi	dren are due	to deficiency
	(3) Def. of Vit B_{12}	(4) Def. of Vit C	Κ	of Vitamin-			
127.	Ascorbic acid is the-			(1) D	(2) A	(3) B	(4) C
	(1) Vit A	(2) Vit-C	138.	Deficiency	of protein lea	ads to :-	
	(3) Vit E	(4) Biotin		(1) Rickets		(2) Scurvy	
128.	Night blindness is cau Vitamin	sed due to deficiency of		(3) Kwashi	orker	(4) Caroten	emia
	(1) B	(2) C	139.	Vitamin wh	ich induces r	naturation of	R.B.C.:-
	(1) D (3) D	(4) A		(1) B_1		(2) A	
129.	Meat. milk and egg mair	ly supply us with-	1.40	(3) B ₁₂	10 D.	(4) D	
	(1) Hormones	(2) Carbohydrates	140.	Pantothenic	c acid & Biot	in associated (2) V''	with:
	(3) Proteins	(4) Fats		(1) Vitamin (2) Witamin	D	(2) Vitamin (4) Witamin	B complex
130.	Protein are mainly requi	red in the body for-	1 4 1	(3) Vitamin	. K	(4) Vitamin	E
	(1) Growth	(2) Repair	141.	(1) Dere	nuuon mainly		
	(3) Both of these	(4) None of these		(1) Brain (2) $T = 1$		(2) Heart	
				(3) Teeth		(4) Kidney	
			1				

				NUCLEUI	MNEETTEST_11 th _ENG-07		
142.	Which of the following vitamins is essential for D N A synthesis and cell division :			SECTIO	N - A		
	(1) Vitamin E	(2) Vitamin D	151.	Respiratory system is de	erived from		
	(1) Vitanni E	(2) Vitanin D		(1) Ectoderm			
	(3) Folic Acid	(4) Vitamin K		(2) Endoderm			
143.	Marasmus disease is caused due to :			(3) Both A & B			
	(1) Protein deficiency	leficiency		(4) Endo mesoderm			
	(2) Obesity			The structure which prevents the entry of food into			
	(3) Dwarfism			(1) nharyny (2) L arwyy			
	(4) Deficiency of vitamins			(1)pilarylix (3) Glottis	(2) Larynx (4) Epiglottis		
144.	Respiration is	Respiration is		Nasal chamber is lined	hv		
	(1) Physical process			(1) Olfactory enithelium			
	(2) Chemical process			(2) Glandular epithelium	(2) Glandular enithelium		
	(3) Physico chemical process			(3) Highly vascularised epithelium			
	(4) None			(4) All			
145.	Larynx is a modified po	rtion of	154.	Signet ring cartilage of l	larynx is		
	(1) Pharynx	(2) Trachea	У	(1) Cricoid	(2) Arytenoid		
	(3) Bronchus	(4) Lungs		(3) Thyroid	(4)All		
146	Cartilaginous rings in trachea are incomplete at which surface.		155.	In thoracic cavity of man one is present			
				(1) Lungs only (2) Lungs + Heart			
	(1) Dorsal	(2) Ventral		(3) Lungs + heart + Stomach			
	(3) Lateral	(4) Ventrolateral		(4) Hearts only			
147.	Wall of alveoli is composed of		156.	Number of alveoli prese	ent in human lungs is		
	(1) Simple squamous ep	ithelium		(1) 7-10 million	(2) 70-100 million		
	(2) Simple cuboidal epith	helium		(3) 300-400 million	(4) 800-1000 million		
	(3) Pseudostratified epit	helium	157.	Vocal cords are attached with			
	(4) Simple columnar epithelium			(1) Cricoid			
148	Which part of thyroid cartilage in larvny is closed			(2) Arytenoid	:4		
1 10.	(1) Dorsal (2) Ventral			(4) None	lu		
	(1) Dorsar (3) Anterior	(2) Ventral	158	Oxygen in lungs ultimat	telv reaches		
140	The function of tracked cilic is to		150.	(1) Alveoli	(2) Trachea		
147.				(3) Bronchus	(4) Bronchioles		
	(1) Pass mucus out	(2) Pass mucus in	159.	In humans sound is pro-	duced by		
	(3) Pass air out	(4) Pass air in		(1) Syrinx	(2) Larynx		
150.	Each lung is enclosed in a double membrance called as pleura. The membrance which closely covers			(3) Bronchus	(4) Trachea		
	the lung is		160.	Lungs are covered by			
	(1) Lung pleura	(2) Visceral pleura		(1) Perichondrium	(2) Pleural sac		
	(3) Peritoneal pleura	(4) Parietal pleura		(3) Pericardium	(4) Peristomium		
			1				

	NUCLEUM CAREER INSTITUTE			NUCLEUM NEET TEST_11 th _ENG-0				
161.	Which is a common	passage for food and air :-	168.	The epithelium of bronchioles is :-				
	(1) Trachea	(2) Oesophagus		(1) Pseudostratified and colummar				
	(3) Pharynx	(4) Glottis		(2) Squamous and sensory				
162.	The alveolar epitheliu	im in the lung is		(3) Pseudostratified and sensory				
	(1) Nonciliated colon	nnar		(4) Cuboidal and columnar				
	(2) Nonciliated squamous(3) Ciliated columnar		169.	The type of tissue lining the nasal passage bronchioles and fallopian tubes is –				
	(4) Ciliated squamous	5		(1) columnar ciliated epithelium				
163.	Air is breathed through		170.	(2) cuboidal epithelium				
	 (1) Trachea → lungs → larynx → pharynx → alveoli (2) Nose → larynx → pharynx → bronchus → alveoli → bronchioles (3) Nostrils → pharynx → larynx → trachea → bronchi → bronchioles → alveoli 			(3) neurosensory epithelium				
				(4) germinal epithelium				
				The process of exchange of O from the atmosphere with CO_2 produced by the cells is called				
	(4) Nose \rightarrow mouth \rightarrow lungs			(1) biological respiration				
164.	Which one protects the lungs			(2) photosynthesis				
	(1) Rib	(2) Vertebral colum	57	(3) biological assimilations				
	(3) Sternum	(4) All above	y	(4) gaseous exchange				
165.	Match the columns		171.	Number of teeth which are monophycodont in man is				
	Column-I MBBS Column-II		t, M	(1) 4 (2) 22				
	(1) Larynx	(p) Lid of larynx		(3) 32 (4) 12				
	(2) Trachea	(q) Air sacs	172.	Islets of langerhans are-				
	(3) Alveoli	(r) Voice box		(1) Modified lymph glands				
	(4) Epiglottis (s) Wind pipe			(2) Ductless glands in pancreas				
		(t) Common passage.		(2) Specialized area in mituiters				
	(1) a-r, b-s, c-q, d-p			(3) Specialized area in pluntary				
	(2) a-t, b-s, c-p, d-q (3) a-r, b-s, c-q, d-t		173.	(4) Small tubules in Kidney				
				bacteria-				
	(4) a-r, b-t, c-q, d-p			(1) Cerumin (2) Chyme				
166.	Adam's Apple represents			(3) Lysozyme (4) Secretin				
	(1) Arytenoid cartilage of larynx		174	Peristaltic movements found in different parts (
	(2) Cricoid cartilage of larynx		1/4.	alimentary canal In which one of these there is le				
	(3) Thyroid cartilage of larynx			peristalsis-				
	(4) All the above			(1) Stomach				
167.	Arvtenoid cartilage is found in			(2) duodenum				
,	(1) Hyoid	(2) Sternum		(3) rectum				
	(3) Larvnx	(4) Nose		(4) Oesophagus				
	(-) j ····	(.)						

175.	The enzyme invertase h	ydrolase-	182.	During prolonged fasting	g-		
	(1) Glucose into sucrose			(1) First fats are used up, followed by			
	(2) Sucrose into glucose and fructose			carbohydrate from liver and muscles, and protein in the end			
	(3) Starch into maltose			(2) First carbohydrate are used up. followed by fat			
	(4) Starch into sucrose			and proteins towards end			
176.	Some proteolytic enzymes are-			(3) First lipids, followed	by proteins and		
	(1) Trypsin, Erepsin, Pepsin			carbohydrates towa	ards end.		
	(2) Amylase, Lipase, Zymase		183.	(4) None of the above			
	(3) Ampylopsin, Steapsin, Ptyalin			(1) Na ⁺ Symport	$(2) K^+ Symmetries$		
	(4) Urease, Dehydroger	nase, Zymase		(1) Na Symport (3) Na ⁺ Antiport	(2) K Symport (4) K ⁺ Antiport		
177.	A Carbohydrate splitting	g enzyme is secreted by -	184.	Stool of a person contai	in whitish grey colour due		
	(1) Liver			to malfunction of which type of organ:			
	(2) Zymogen cells of gas	stic glands		(1) Pancreas	(2) Spleen		
	(3) Spleen	ERTISE I	N	(3) Kidney	(4) Liver		
	(4) Crypts of Lieberkuhn		185.	The chief function of bile is to :			
178	(+) Crypts of Electer kunner		У	(1) Digest fat by enzymatic action			
170.	of -			(2) Emulsify fats for digestion			
	(1) More than seven to change starch into maltose.		F M	(3) Eliminate waste products(4) Regulate direction of protoing			
(2) Less than 7 to change starch into			2	(4) Regulate digestion (of proteins		
	(2) Less than 7 to change	starch into maltose.		SECTIO	NR		
	(2) Less than 7 to change(3) More than 7 to change	starch into maltose. maltose into glucose.	186.	SECTIO What is the common pas	N - B sage for bile and pancreatic		
	(2) Less than 7 to change(3) More than 7 to change(4) Less than 7 to change	e starch into maltose. maltose into glucose. maltose into glucose	186.	SECTIO What is the common pasijuices	N - B sage for bile and pancreatic		
179.	 (2) Less than 7 to change (3) More than 7 to change (4) Less than 7 to change Point out the odd one- 	e starch into maltose. maltose into glucose. maltose into glucose	186.	SECTIO What is the common pas juices (1) Ampulla of Vater	 N - B sage for bile and pancreatic (2) Ductus Choledochus 		
179.	 (2) Less than 7 to change (3) More than 7 to change (4) Less than 7 to change Point out the odd one- (1) Rennin 	e starch into maltose. maltose into glucose. maltose into glucose	186.	SECTIO What is the common pas juices (1) Ampulla of Vater (3) Duct of Wirsung	 N - B sage for bile and pancreatic (2) Ductus Choledochus (4) Duct of Santorini 		
179.	 (2) Less than 7 to change (3) More than 7 to change a (4) Less than 7 to change a Point out the odd one- (1) Rennin (3) Calcitonin 	e starch into maltose. maltose into glucose. maltose into glucose (2) Secretin (4) Oxytocin	186. 187.	SECTIO What is the common pas- juices (1) Ampulla of Vater (3) Duct of Wirsung Continuous bleeding from	 N - B sage for bile and pancreatic (2) Ductus Choledochus (4) Duct of Santorini m an injured part of body is 		
179.	 (2) Less than 7 to change (3) More than 7 to change (4) Less than 7 to change Point out the odd one- (1) Rennin (3) Calcitonin Castle's intrinsic factor 	e starch into maltose. maltose into glucose. maltose into glucose (2) Secretin (4) Oxytocin is connected with internal	186. 187.	SECTIO What is the common pas- juices (1) Ampulla of Vater (3) Duct of Wirsung Continuous bleeding from due to deficiency of : (1) Vitamin A	N - B sage for bile and pancreatic (2) Ductus Choledochus (4) Duct of Santorini m an injured part of body is (2) Vitamin P		
179. 180.	 (2) Less than 7 to change (3) More than 7 to change (4) Less than 7 to change Point out the odd one- (1) Rennin (3) Calcitonin Castle's intrinsic factor absorption of- 	e starch into maltose. maltose into glucose. maltose into glucose (2) Secretin (4) Oxytocin is connected with internal	186. 187.	SECTIO What is the common pas- juices (1) Ampulla of Vater (3) Duct of Wirsung Continuous bleeding from due to deficiency of : (1) Vitamin A (3) Vitamin K	N - B sage for bile and pancreatic (2) Ductus Choledochus (4) Duct of Santorini m an injured part of body is (2) Vitamin B (4) Vitamin E		
179. 180.	 (2) Less than 7 to change (3) More than 7 to change (4) Less than 7 to change Point out the odd one- (1) Rennin (3) Calcitonin Castle's intrinsic factor absorption of- (1) Pyridoxine 	e starch into maltose. maltose into glucose. maltose into glucose (2) Secretin (4) Oxytocin is connected with internal (2) Riboflavin	186.187.188.	SECTIO What is the common pas juices (1) Ampulla of Vater (3) Duct of Wirsung Continuous bleeding fro due to deficiency of : (1) Vitamin A (3) Vitamin K Select the incorrect state	N - B sage for bile and pancreatic (2) Ductus Choledochus (4) Duct of Santorini m an injured part of body is (2) Vitamin B (4) Vitamin E ements :		
179. 180.	 (2) Less than 7 to change (3) More than 7 to change (4) Less than 7 to change Point out the odd one- (1) Rennin (3) Calcitonin Castle's intrinsic factor absorption of- (1) Pyridoxine (3) Thiamine 	e starch into maltose. maltose into glucose. maltose into glucose (2) Secretin (4) Oxytocin is connected with internal (2) Riboflavin (4) Cobalamine	186.187.188.	SECTIO What is the common pas- juices (1) Ampulla of Vater (3) Duct of Wirsung Continuous bleeding fro- due to deficiency of : (1) Vitamin A (3) Vitamin K Select the incorrect state (1) alimentary canal beg	N - B sage for bile and pancreatic (2) Ductus Choledochus (4) Duct of Santorini m an injured part of body is (2) Vitamin B (4) Vitamin E ements : gins with an anterior		
179. 180. 181.	 (2) Less than 7 to change (3) More than 7 to change (4) Less than 7 to change Point out the odd one- (1) Rennin (3) Calcitonin Castle's intrinsic factor absorption of- (1) Pyridoxine (3) Thiamine Inhibition of gastric and 	e starch into maltose. maltose into glucose. (2) Secretin (4) Oxytocin is connected with internal (2) Riboflavin (4) Cobalamine ad stimulation of gastric,	186.187.188.	SECTIO What is the common pas- juices (1) Ampulla of Vater (3) Duct of Wirsung Continuous bleeding from due to deficiency of : (1) Vitamin A (3) Vitamin K Select the incorrect state (1) alimentary canal beg cavity called buccal of	N - B sage for bile and pancreatic (2) Ductus Choledochus (4) Duct of Santorini m an injured part of body is (2) Vitamin B (4) Vitamin E ements : gins with an anterior cavity.		
179. 180. 181.	 (2) Less than 7 to change (3) More than 7 to change (4) Less than 7 to change Point out the odd one- (1) Rennin (3) Calcitonin Castle's intrinsic factor absorption of- (1) Pyridoxine (3) Thiamine Inhibition of gastric ar pancreatic and bile secret 	e starch into maltose. maltose into glucose. (2) Secretin (4) Oxytocin is connected with internal (2) Riboflavin (4) Cobalamine ad stimulation of gastric, etion are controlled by-	186.187.188.	SECTIO What is the common pas- juices (1) Ampulla of Vater (3) Duct of Wirsung Continuous bleeding from due to deficiency of : (1) Vitamin A (3) Vitamin K Select the incorrect state (1) alimentary canal beg cavity called buccal of (2) tooth is embedded in	N - B sage for bile and pancreatic (2) Ductus Choledochus (4) Duct of Santorini m an injured part of body is (2) Vitamin B (4) Vitamin E ements : gins with an anterior cavity. n a socket of		
179. 180. 181.	 (2) Less than 7 to change (3) More than 7 to change (4) Less than 7 to change Point out the odd one- (1) Rennin (3) Calcitonin Castle's intrinsic factor absorption of- (1) Pyridoxine (3) Thiamine Inhibition of gastric ar pancreatic and bile secret (1) Gastrin, secretin, Ent 	e starch into maltose. maltose into glucose. (2) Secretin (4) Oxytocin is connected with internal (2) Riboflavin (4) Cobalamine ad stimulation of gastric, etion are controlled by-	186.187.188.	SECTIO What is the common pas- juices (1) Ampulla of Vater (3) Duct of Wirsung Continuous bleeding from due to deficiency of : (1) Vitamin A (3) Vitamin K Select the incorrect state (1) alimentary canal beg cavity called buccal of (2) tooth is embedded in mandible bone only.	N - B sage for bile and pancreatic (2) Ductus Choledochus (4) Duct of Santorini m an injured part of body is (2) Vitamin B (4) Vitamin E ements : gins with an anterior cavity. n a socket of		
179. 180. 181.	 (2) Less than 7 to change (3) More than 7 to change (4) Less than 7 to change Point out the odd one- (1) Rennin (3) Calcitonin Castle's intrinsic factor absorption of- (1) Pyridoxine (3) Thiamine Inhibition of gastric ar pancreatic and bile secret (1) Gastrin, secretin, Ent (2) Enterogastrin, gastrin 	e starch into maltose. maltose into glucose. (2) Secretin (4) Oxytocin is connected with internal (2) Riboflavin (4) Cobalamine ad stimulation of gastric, etion are controlled by- terokinin and CCK	186.187.188.	SECTIO What is the common pase juices (1) Ampulla of Vater (3) Duct of Wirsung Continuous bleeding from due to deficiency of : (1) Vitamin A (3) Vitamin K Select the incorrect state (1) alimentary canal beg cavity called buccal of (2) tooth is embedded in mandible bone only. (3) human shows strict of of dentition.	N - B sage for bile and pancreatic (2) Ductus Choledochus (4) Duct of Santorini m an injured part of body is (2) Vitamin B (4) Vitamin E ements : gins with an anterior cavity. n a socket of liphyodont type		
179. 180. 181.	 (2) Less than 7 to change (3) More than 7 to change (4) Less than 7 to change Point out the odd one- (1) Rennin (3) Calcitonin Castle's intrinsic factor (1) Pyridoxine (3) Thiamine Inhibition of gastric ar pancreatic and bile secret (1) Gastrin, secretin, Enter (3) Gastrin, Enterogastrin 	e starch into maltose. maltose into glucose. (2) Secretin (4) Oxytocin is connected with internal (2) Riboflavin (4) Cobalamine ad stimulation of gastric, etion are controlled by- terokinin and CCK n, pancreozymin and CCK one, CCK and	186.187.188.	SECTIO What is the common pas- juices (1) Ampulla of Vater (3) Duct of Wirsung Continuous bleeding from due to deficiency of : (1) Vitamin A (3) Vitamin K Select the incorrect state (1) alimentary canal beg cavity called buccal of (2) tooth is embedded in mandible bone only. (3) human shows strict of of dentition. (4) oesophagus and the the pharynx.	N - B sage for bile and pancreatic (2) Ductus Choledochus (4) Duct of Santorini m an injured part of body is (2) Vitamin B (4) Vitamin E ements : gins with an anterior cavity. n a socket of liphyodont type trachea does not open into		
179. 180. 181.	 (2) Less than 7 to change (3) More than 7 to change (4) Less than 7 to change Point out the odd one- (1) Rennin (3) Calcitonin Castle's intrinsic factor (3) Calcitonin (1) Pyridoxine (3) Thiamine Inhibition of gastric ar pancreatic and bile secret (1) Gastrin, secretin, Enter (2) Enterogastrin, gastrin (3) Gastrin, Enterogastra (4) Secretin, Enterogastra 	e starch into maltose. maltose into glucose. (2) Secretin (4) Oxytocin is connected with internal (2) Riboflavin (4) Cobalamine (4) Cobalamine ad stimulation of gastric, etion are controlled by- terokinin and CCK n, pancreozymin and CCK one, CCK and	186.187.188.	SECTIO What is the common pas- juices (1) Ampulla of Vater (3) Duct of Wirsung Continuous bleeding frod due to deficiency of : (1) Vitamin A (3) Vitamin K Select the incorrect state (1) alimentary canal beg cavity called buccal of (2) tooth is embedded in mandible bone only. (3) human shows strict of of dentition. (4) oesophagus and the the pharynx. (1) a, b, c & d	N - B sage for bile and pancreatic (2) Ductus Choledochus (4) Duct of Santorini m an injured part of body is (2) Vitamin B (4) Vitamin E ements : gins with an anterior cavity. n a socket of liphyodont type trachea does not open into (2) a, b & c		

NUCLEUM NEET TEST_11th_ENG-07

189.	Select the correct statements.	193. Find out the correct match :							
	(1) Salivary glands situated just outside the buccal	Column I			Column II				
	cavity.	A. Hepatic loluble			i. Sub mucosal glands				
	(2) Liver is the largest digestive gland.	B. Brunner's glands				ii. Base of villi			
	(3) Cystic duct not arises from gall bladder.	С	C. Crypts of lieberkuhn			hn	iiii. Gl	isson's capsule	
	(4) Sphincter of oddi can regulate the released of pancreatic and bile juice in duodenum.	D. Sphincter of Oddi E. Cystic duct				i	iv. Gall bladder		
	(1) a, b, c & d						v. Hepatopancreatic duct		
	(2) a, b & d				D	G	vı. Ser	ous glands	
	(3) b, c & d		(1)	A 	В	C 	D	Е	
	(4) a, b & c		(1)	Ш	V1	11	v	IV	
190.	All of the following is correct w.r.t. large intestine		(2)	v 	1	111	VI	1	
	except.		(3)	ш	1	1	V	IV	
	(1) No significant digestive activity.	N	(4)	iv	vi	V	Ĩ	i	
	(2) Absorption of some water	194.	Apa	A patient is generally advised to specially, consume					
	(3) Absorption of certain minerals.	у	the suffers from :					255 in ciet only when	
	(4) Absorption of remaining glucose and	(1)		Kwasl	niorkar		(2)	Rickets	
	amino acid MBBS-Gold Nevalis	t. IV	(3) Anaemia (4) Scurvy						
191.	Gluconeogenesis is :	195.	Whi	ch on	one of the following is the correct matching				
	(1) formation of ammonia from glucose		of th actin	e site ng upo	of acion on it and	on t d the	he given end pro	substrate, the enzyme	
	(2) breakdown of glucose		(1) \$	Small	intestin	e : pi	oteins	pep sin	
	(3) formation of glycogen		am	ino ac	cids	_			
	(4) formation of glucose from sources		(2) \$	Stoma	ch : fats	3	$\xrightarrow{lipase} n$	nicelles	
	other than carbohydrate		(3) Duodenum :tryglycerides						
192.	In mammals the teeth are		tryp sin monoglycerides						
	(1) of different types	(4) Small		all intestine : starch $\xrightarrow{\alpha-\text{amylase}}$					
	(2) embedded in the cuplike socket in the jaw bones		disaccharide (maltose)						
	(3) only two sets, present throughout life	196.	Carrier ions like Na ⁺ facilitate the absorption of substances like						
	The condition are referred as :	(1) Fructose and some aming		e amino	acids				
	(1) heterodont, thecodont, diphyodont		(2) <i>A</i>	Amino	acids a	and g	glucose		
	(2) the codont, heterodont, diphyodont		(3)	Gluco	se and f	atty	acids		
	(3) diphyodont, the codont, heterodont		(4) I	Fatty a	acids an	d gly	ycerol		
	(4) heterodont, diphyodont, thecodont								

			NUCLEUM NEET TEST_11 th _ENG-07
197. 198.	Fructose is absorbed into the blood through mucosa cells of intestine by the process called (1) Simple diffusion (2) Co-transport mechanism (3) Active transport (4) Facilitated transport Where do certain symbiotic microorganisms normally occur in human body (1) Caecum (2) Oral lining and tongue surface	199. 200.	Contraction of gall bladder is carried by : (1) citric acid + acetyl Co-A (2) gastrin (3) cholecystokinin (4) none of these Fatty liver syndrome is due to excessive intake of (1) Morphine (2) Alcohol (3) Tobacco
	(3) Vermiform appendix and rectum (4) Duodenum Dr. Angelasti ABBS-Gold Astro- ABBS-Gold AST		(4) Both 'I' and '2'

Website : www.nucleum.in 🕓 70248-60313

nucleum_career_institute

Er. Amith Mishrra Sir DIRECTOR, HOD PHYSICS B. TECH CSE, Roorkee (12+ Years Teaching Experience)

Dr. Nikhil Mishra Sir DIRECTOR, HOD CHEMISTRY MBBS MGM Medical College, Indore (8+ Years Teaching Experience)

Dr. Anas Qureshi Sir DIRECTOR, HOD BIOLOGY MBBS (Gold Medalist) MGM Medical College, Indore (8+ Years Teaching Experience)

Why Nucleum?

- **Highest Selection Ratio in Central India.**
- Mentoring by only Doctors & Engineers.
- Limited Batch size.
- Separate batches for Hindi & English medium.
- Directors के द्वारा व्यक्तिगत Doubt session.
- हिन्दी माध्यम के छात्रों के लिए विशेष अध्ययन सामग्री
- Weekly NEET Targeted & Full syllabus Test Series.
- **Daily Practice session.**
- 8 am to 8 pm Library Facility.
- **NCERT** based Separate Lectures.
- Micro analysis of each test.

Y BIRD **30% Scholarship**

2nd Floor, Victory Chamber, 4A Ratlam Kothi, Geeta Bhawan Square , Indore 70248-60313,88712-97323, 79990-18964, 82248-71115

0